A Novel Approach to Bz-Substituted Tryptophans via Pd-catalysed Coupling / Annulation.

Torsten Jeschke, David Wensbo, Ulf Annby, Salo Gronowitz*

Division of Organic Chemistry 1, Chemical Center, University of Lund, P.O.B. 124, S-221 00 Lund, Sweden

Louis A. Cohen

Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20 892, U.S.A.

Abstract: The Pd-catalysed preparation of bz-substituted tryptophans and their derivatives, starting from 2-iodoanilines and y,ð-acetylenic amino acid derivatives, is reported.

We have recently described the Pd-catalysed preparation of heterocondensed pyrroles 1^1 . Herein we report on the synthesis of some tryptophans, carrying substituents in the benzene ring, by use of the same methodology² (eq. 1). Earlier methods consist, for instance, of (i) electrophilic substitution in cyclic tautomers of tryptophan³, or direct nitration in the 6-position of tryptophan⁴, (ii) the Fischer indolisation

$$x = 1$$

$$x =$$

starting from suitably substituted arylhydrazones leading directly to tryptophan derivatives⁵, or (iii) the construction of tryptophans from indoles, either through organic synthesis⁶ or enzymatically⁷. In our strategy (eq. 1) the tryptophan derivatives are built in a convergent manner from easily prepared building blocks 2^8 and $3^{9,10}$. Some results are given in Table 1.

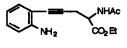
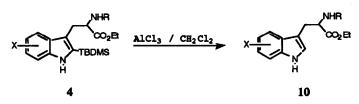

Entry	2-iodoanilines	acetylenic amino acid ester	[Si]=T KOAc / 22 27 X= KOAC / 22 38 X= Et ₃ N / 23 62 X= Et ₃ N / 24 53 X= Et ₃ N / 20 48 X=	isolated yield of 4 (%) ^b [Si]=TBDMS
1	2a	3Ъ	KOAc / 22	27 X=H, $R^1 = R^2 = Ac$
2	2b	3b	KOAC / 22	38 X= R^1 =H, R^2 =Ac
3	2b	3c	El ₃ N/23	62 X= R^1 =H, R^2 = ^t Boc
4	2c	3c	Et ₃ N/24	53 X=5-NO ₂ , R ¹ =H, R ² = ^t Boc
5	2e	3c	Et ₃ N/20	48 X=5-Cl, R^1 =H, R^2 = ^t Boc
6	21	3c	Et ₃ N/22	47 X=5-F, R^1 =H, R^2 = ^t Boc
7	2h	3c	Et ₂ N / 24	46 X=6-NO ₂ , R ¹ =H, R ² = ^t Boc

Table 1. Pd-catalysed Reactions of 2-iodoanilines 2 and acetylenic amino acid esters 3.ª

^a All reactions were run in DMF with 2 (0.5 mmol), Pd(OAc)₂ (5 mol%), PPh₃ (5 mol%), n-Bu₄NCl (1 equiv.) and acetylenes 3 (2 equiv.) at 90-100°C under nitrogen. The regiochemical outcome¹¹ was confirmed by NOE experiments of the product in one case (entry 7).

^b All products gave appropriate ¹H-NMR, IR, MS, HR-MS. ¹³C-NMR spectra were also obtained in some cases.

We have previously shown the necessity of utilising TBDMS-substituted propargyl alcohol when performing this reaction with N-substituted aryl iodides, in the preparation of compounds such as 1^1 . When aromatics with a free NH₂ group were reacted, the TMS-analogue was preferred^{1,2}. Unexpectedly the reaction of **2b** (free NH₂) with the TMS-containing acetylene **3a** yielded 40 % of **5** (¹H-NMR, ¹³C-NMR, IR, MS, HR-MS, compare ref. 1). Preliminary results implied advantages of utilising free anilines

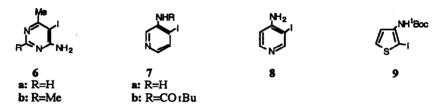

5

6472

over N-substituted ones (entries 1 and 2, Table 1) and triethylamine as the base (entry 3, Na_2CO_3 resulted in inferior yields). 2-Iodo-4-bromoaniline 2d gave a complex reaction mixture with 3e, irrespective of whether Na_2CO_3 or Et₃N was employed as base, or whether PPh₃ was added or not. No reaction between 2g and 3e, in the presence of Et₃N / PPh₃, could be observed (TLC).

When the products 4 of the coupling / annulation reaction were desily lated, the ^tBoc substituent was concomitantly cleaved off 12,13 (Table 2).

Table 2. Desilylation of 4.ª


4	isolated yield (%) of 10 ^c		
X=H, R=Ac ^b	30	X=H, R=Ac	10a
X=5-NO ₂ , R= ^t Boc	5 6	X=5-NO ₂ , R=H	10b
X=5-Cl, R= ^t Boc	64	X=5-Cl, R=H	10c
X=5-F, R= ^t B∞	28	X=5-F, R=H	10 d
X=6-NO ₂ , R= ^t Boc	13	X=6-NO ₂ , R=H	10e

^aCompounds 4 (0.1 mmol) in 5 ml CH₂Cl₂ were added slowly to AlCl₃ (10 equiv.) in 1.5 ml CH₂Cl₂ at 0°C. The mixture was stirred at this temperature for 3 h, then hydrolysed with NaHCO₃ (sat.). The products 10 were purified by chromatography.

^bAttempts to desilylate with n-Bu₄NF / CF₃ CH₂OH in THF failed.

^CThe ¹H-NMR spectrum of **10a** was identical with published data¹⁴. For compounds **10b-e**, appropriate analytical data (¹H-NMR, IR, MS, HR-MS) were obtained.

So far, the reactions of **6-9** with **3a-c** under various conditions resulted in considerably lower yields (0-30 %) compared to those indicated in Table 1. The thiophene **9** belongs to the group of substrates from which no detectable amounts of tryptophan analogues were produced, dehalogenated **9** being recovered instead.

In summary, we have shown this coupling / annulation-desilylation sequence to be applicable to the preparation of bz-substituted tryptophans and their derivatives. We hope, after proper elaboration, that yields will be improved, especially regarding the heterocondensed analogues.

Acknowledgement. Grants from the Swedish Natural Research Council to S.G. and U.A. are gratefully acknowledged.

References and Notes

- 1. Wensbo, D.; Eriksson, A.; Jeschke, T.; Annby, U.; Gronowitz, S.; Cohen, L.A. Tetrahedron Lett. 1993, 34, 2823-2826.
- 2. The synthesis of indoles via Pd-catalysed heteroannulation of ortho-iodoanilines and internal alkynes was first reported by Larock, R.C.; Yum, E.K. J. Am. Chem. Soc. 1991, 113, 6689-6690.
- 3. Taniguchi, M.; Gonsho, A.; Nakagawa, M.; Hino, T. Chem. Pharm. Bull. 1983, 31, 1856-1865.
- a) DeFazi, R; Berti, G.; Da Settimo, A. Gazz. Chim. Italia 1959, 89, 2238. b)For further transformations leading to 6-NH₂ and 6-Cl substituted tryptophan, see Moriya, T.; Hagio, K.; Yoneda, N. Bull. Chem. Soc. Jpn 1975, 48, 2217-2218.
- 5. a) Porter, J.; Dykert, J.; Rivier, J. Int. J. Peptide Protein Res. 1987, 30, 13-21. b) Shiba, T.; Mukunoki, Y.; Akiyama, H. Bull. Chem. Soc. Jpn. 1975, 48, 1902-1906.
- 6. a) Cavallini, G.; Ravenna, F. Il Farmaco 1958, 13, 105. b) DeGraw, J.; Goodman, L. J. Org. Chem. 1962, 27, 1395-1397.
- 7. Lee, M.; Phillips, R.S. Bioorg. Med. Chem. Lett. 1992, 2, 1563-1564 and references cited there.
- 8. Prepared by iodination with ICl of the 4- or 5-substituted anilines, cf. Beilstein, 12, 746e.
- 9. The acetylenic amino acid esters 3 were prepared by alkylation¹⁰ of the benzylidene derivative of glycine with TMS- or TBDMS-substituted propargylbromides in good yields. The free amines, obtained after chromatography¹⁰, were N-acylated with AcCl or ^tBoc₂O, yielding 3a-c (76-84 %) which showed appro-

priate spectroscopic data (¹H-NMR, and IR, MS or ¹³C-NMR).

- 10. Stork, G.; Leong, A.Y.W.; Touzin, A.M. J. Org. Chem. 1976, 41, 3491-3493.
- 11. The sterically more demanding silvl group ends up adjacent to nitrogen in 4 (see ref. 1 and 2).
- 12. AlCl₃ has been used to cleave benzyl esters ¹³, and the ^tBoc group in our cases is probably removed by the Lewis acid in a similar way.
- 13. Tsuji, T.; Kataoka, T.; Yoshioka, M.; Sendo, Y.; Nishitani, Y.; Hirai, S.; Maeda, T.; Nagata, W.; Tetrahedron Lett. 1979, 2793-2796.
- 14. Pouchert, C.J.; Behnke, J. The Aldrich Library of ¹³C and ¹H FT NMR Spectra 1993, Vol. III, p. 147B

(Received in UK 16 June 1993; accepted 5 August 1993)